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Automatic grid generation
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Current methods for the automatic generation of grids are reviewed. The ap-
proaches to grid generation that are discussed include Cartesian, multi-block-
structured, overlapping and unstructured. Emphasis is placed on those meth-
ods that can create high-quality grids appropriate for the solution of equations
of a hyperbolic nature, such as those that arise in fluid dynamics. Numerous
figures illustrate the different grid generation techniques.
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1. Introduction

The intent of this paper is to give a brief review of current methods for the
automatic generation of grids for the solution of problems from computational
fluid dynamics (CFD), computational electromagnetics and other fields where
the solutions are hyperbolic in nature. These applications require the gener-
ation of high quality grids with a large number of grid points. It is often
the case that the geometry may change with time or it may be necessary
to refine the mesh adaptively. It is thus essential that the grid generation
algorithms be fast, since the grid may have to be regenerated at every step
of a time-dependent simulation. Various popular methods for structured and
unstructured grid generation will be described. Figures will illustrate the
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current state of the technology. Grid generation capabilities have improved
greatly in recent years. However, it is perhaps not an exaggeration to say that
the construction of a grid is currently the most difficult and time-consuming
aspect of determining an accurate solution to a problem on a complicated do-
main. Indeed, starting from scratch, with some description of the geometry,
the time to generate a grid is measured in weeks rather than hours.

Fig. 1. A Cartesian grid.

Early computational grids were often Cartesian grids, or cut-out grids (Fig.
1), whereby the region was covered by a single rectangular grid and the por-
tions of the grid lying outside the region were cut out, leaving some irregular
cells. This approach was replaced by boundary-conforming grids, whereby a
rectangular grid was mapped onto the region, with boundaries correspond-
ing to a coordinate line. Such curvilinear grids that are transformations of
a rectangular grid will be called logically rectangular grids. Grids that con-
formed to boundaries improved solution accuracy and made it easier to ap-
ply boundary conditions. As computers became faster and more complicated
problems were attempted, it became apparent that this single-block approach
was not flexible enough to handle complicated geometries. This led to the
introduction of the multi-block approach, where the domain was partitioned
into blocks and within each block a logically rectangular grid was construc-
ted (Fig. 2). In time, however, it became apparent that this approach was
still not sufficiently flexible, and was difficult to automate. Therefore some
other approach was needed. One way to add additional flexibility, while still
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Fig. 2. A multi-block-structured grid divides the region into logically rectangular
blocks.

retaining the logically rectangular structure, was the use of overlapping grids
in which the component grids are allowed to overlap. There has also been
renewed interest in the Cartesian grid approach, using adaptive mesh refine-
ment to improve boundary resolution. Recently, the main interest and focus
of research has been in unstructured meshes, which allow complete freedom
in grid point placement, although at the expense of speed and memory usage.
With little doubt, unstructured meshes offer the best hope for a completely
automatic mesh generation program. Completely unstructured grids are not
without their difficulties for CFD, and perhaps a hybrid method, combining
the unstructured approach with locally structured grids (to resolve boundary
layers, for example), will turn out to be the most effective.

The purpose of grid generation is to create a discrete representation for
a domain. This entails distributing points throughout the domain. There
are two main classes of grids, structured and unstructured. In a structured
grid the points covering the domain result from the transformation of a lo-
gically rectangular square (or cube in three dimensions*). The grid points
can be stored as an array ~x.{i\,i2) and the neighbours of a given grid point
are simply found as the neighbours in index space, x(?i ± 1,̂ 2 ± 1)- In an
unstructured grid, on the other hand, the points are connected to one another

* Throughout this paper, the terminology will be for two-dimensional grids (quadrilat-
erals, triangles), but the remarks will usually apply equally well to three-dimensional
grids (hexahedra, tetrahedra).
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Fig. 3. An overlapping grid consists of logically rectangular blocks that overlap;
some blocks have cut-out regions.

in a general manner; the connectivity information must be explicitly saved.
The grid points might be saved as a list Xj, and there would be other lists giv-
ing information about neighbours. Of course, the partition of grid types into
structured and unstructured is not entirely appropriate, since some grids con-
sist of a set of structured grids and other hybrid grids have both unstructured
and structured parts.

Grids are used to solve equations, typically partial differential equations
(PDEs) and integral equations. The computer programs that solve these
equations, hereafter referred to as solvers, typically discretize a continuous
equation with finite-difference, finite-element, finite-volume, spectral-element
or boundary-integral methods. At the grid generation level, it is usually not
important which particular solver will use the grid: rather the style of the
grid is most relevant. That is, it is important whether the grid is structured
or unstructured, whether the grid elements are triangles or quadrilaterals, or
whether the grid is multi-block-structured or overlapping (see Fig. 3). The
unstructured triangular grid (see Fig. 4) can be used either with a finite-
element solver or a finite-volume solver, just as a multi-block-structured grid
can be used by a finite-difference solver or by finite-element solver for quad-
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Fig. 4. An unstructured triangular grid is very flexible for representing geometry.

rilaterals. Despite these remarks, it is not uncommon to see references to a
finite-element mesh (which usually just means an unstructured grid).

The errors in solving a PDE on a grid depend strongly on the quality
of the grid. The quality of a grid is a relative concept and depends on the
actual equations that will be solved, as well as the numerical method that
will be used. In principle, a given problem could be repeatedly solved with
different grids (with the same number of grid points) and the error in the
numerical solution could be measured as a function of the grid. The smaller
the error, the better the quality of the grid. Some adaptive methods do
indeed redistribute points to try and minimize the error. When creating a grid
initially, however, the grid is usually generated with some general principles in
mind, such as keeping the cell size varying smoothly, and resolving boundary
layers, if appropriate. Generally speaking, the solution of equations with
wave-like behaviour (hyperbolic) require smoother grids than the solution of
elliptic equations. The smoothness of a grid is hard to define in general
but relates to the local variation of the cells. An elliptic problem can be
accurately solved on a relatively poor-quality grid since the effects of any
non-smoothness in the grid will be smoothed out by the elliptic operator. In
contrast, hyperbolic operators provide no smoothing effects. To understand
this further, note that the properties of the grid, such as the variations in the
grid point positions, appear, implicitly or explicitly, in the discrete equations
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used in the solver. Consider the solution of the one-dimensional wave equation

du du
ot ox

If the grid points are allowed to vary according to the parameterization x =
X(r) (that is the grid points are equally spaced in r), then the equation for
v(r, t) = u(X(r),t) becomes

dv 1 dv _
dt Xr dr

It is now clear that, if the parameterization is not smooth, then Xr will not
be smooth, and this will be reflected in the discrete solution. A grid that is
not smooth can distort waves and cause spurious reflections, rather similar
to the effect of a wave passing through a non-uniform medium. Higher-order
accurate methods are also popular for the solution of wave-like problems, for
both efficiency and accuracy reasons. Higher-order methods will in general
require higher-quality grids than lower-order methods.

It is important to realize that solvers written for one type of grid will typic-
ally not work on other types of grids. Although a structured grid can always
be turned into an unstructured grid and used with an unstructured solver, the
unstructured solver would not usually take advantage of the structured nature
of the grid. There is, however, increasing interest in hybrid grids and hybrid
grid solvers. Hybrid grids range from those that are primarily unstructured
triangles, with some structured quadrilaterals to resolve a boundary layer, to
those that are primarily structured blocks, with triangles used to merge the
blocks.

The number of grid points required for many three-dimensional problems
is extremely large. For typical big simulations there are on the order of 106

grid points, this number being limited only by computer memory and speed.
Viscous fluid flow computations over an entire aircraft could easily use orders
of magnitude more grid points. Points are required not only to represent
complicated geometries (as illustrated by some of the figures in this paper)
but also to resolve rapidly varying features of the solution (shocks, boundary
layers, vortex shedding).

The following grid generation methods will be discussed in more detail in
the rest of this paper:

• Cartesian
• multi-block-structured
• overlapping
• unstructured.

The area of adaptive mesh refinement, a large and active field in itself, will
only be briefly mentioned here. Further information can be found in many of
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the references. There are a number of issues that must be considered when
evaluating the appropriateness of a given type of grid or grid generator:

• the speed of generating a grid
• the robustness of grid generation
• the quality of the generated grid
• the ability to construct grids from standard computer-aided-design spe-

cifications
• the level to which the grid generation is automatic - how much user

intervention is required and how many tuning parameters are there?
• the support for adaptivity and moving geometries - can grids be regen-

erated quickly?
• the speed of the solver on the resulting grid
• the effectiveness of the approach on both parallel and serial architectures.

Generally, unstructured grid generators tend to be more robust and auto-
matic, while structured grid generators create higher quality grids for which
faster and more efficient solvers can be written. Further remarks on these
issues will be made when the different approaches are discussed.

The field of grid generation is expanding rapidly. Many excellent references
have been unavoidably omitted from this review and apologies are due to
the authors. For further information, the reader is referred to the books by
Thompson, Warsi and Mastin (1985), George (1991), Knupp and Steinberg
(1993), and Castillo (1991); the conference proceedings edited by Weatherhill
et al. (1994), Arcilla, Hauser, Eiseman and Thompson (1991), and Babuska,
Flaherty, Henshaw, Hopcroft, Oliger and Tezduyar (1995); and the review
papers by Lohner (1987), and Eiseman (1985). Some other excellent sources
of information are Robert Schneiders' Finite Element Mesh Generation site
on the World Wide Web:

http: //www-users. inf ormat ik. rwth-aachen. de/~roberts/meshgeneration. html

and Steven Owen's Meshing Research Corner site:

http: //www. ce. emu. edu: 8000/user/sowen/www/mesh. html

These sites include information about both unstructured and structured mesh
generation, and pointers to a variety of public-domain and commercial grid
generation packages.

2. Basic steps in grid generation

There are some basic steps in constructing a grid that are common to many
of the grid generation approaches.

• As a first step in the grid generation process, the geometry of the re-
gion to be discretized must be defined, that is, the surfaces that make
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up the boundary of the region must be described. The geometry can
be represented in many ways, such as with analytic shapes (spheres,
cylinders), splines, NURBS (non-uniform rational b-splines), and inter-
polation methods. The geometry may be constructed within a computer-
aided-design (CAD) system or within the grid generation system itself.
Many CAD systems emphasize solid modelling using analytic shapes and
do not cater particularly well to the creation of grids for flow problems.
As a result, many grid-generation packages provide some level of CAD
support.

• Given the representation of the surface (as a NURB, for example), it
is often necessary to reparameterize the surface. This step is referred
to as constructing a surface grid. (The Cartesian grid approach would
not require this step.) Given a smooth surface, the most widely used
CAD representations of this surface are only guaranteed to be geomet-
rically smooth - they are often not parametrically smooth. Thus, if grid
lines are drawn on the surface, equally spaced in parameter space, the
lines will not vary smoothly. Typically the parametric derivatives of the
surface will not even be continuous. By relaxing the requirements of
parametric smoothness, it is easier for the CAD system to represent the
surface, but unfortunately such a representation causes major difficulties
for the grid generation system. Furthermore, CAD programs often rep-
resent complicated surfaces by multiple patches and these patches may
not join properly (there may be gaps between patches, or the patches
may overlap). Grid generators must carefully examine the surfaces and
fix such defects. This is a difficult task and one that in principle should
not be necessary.
Grid generators would like to have parametrically smooth surfaces so
that the grid points vary smoothly over the surface. The smoothing
of the surface parameterization typically involves solving an elliptic-like
equation on the surface or, in the case of triangles, shifting vertices
according to some averaging procedure. This step will also involve clus-
tering of grid points, such as in regions of high curvature. Surface grid
generation techniques are usually quite similar to volume grid generation
methods.

• The third step is the generation of a volume grid. The procedure followed
at this stage differs significantly between the various grid types, and will
be described in the following sections.

3. Cartesian grid generation

Lately, there has been renewed interest in the Cartesian grid approach, due
to its simplicity and ease of automatic grid generation. By combining the
Cartesian approach with adaptive mesh refinement, several of the drawbacks
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Fig. 5. Cartesian grid for the F16XL.
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of the technique have been eased; see, for example, Berger and Melton (1994),
and Coirier and Powell (1995). In the Cartesian grid approach, the region
is covered by a rectangular grid. Domain boundaries cut out regions of the
grid. The boundaries are not covered by boundary-fitted grids, but adaptive
refinement can be used to improve surface resolution. Adaptively refined
Cartesian grids combine elements of structured and unstructured grids and
are perhaps best classified as hybrid grids. Cartesian grid solvers are faster
and more efficient than more general unstructured solvers. Since the grids
are all rectangular, much less geometrical information needs to be saved and
there are significantly fewer operations required per grid point. Fig. 5 shows
a Cartesian grid for an F16XL (Berger and Melton 1994).

The main drawback of the Cartesian-grid method lies in the representation
of the boundary, where small cells are often formed. Without special treat-
ment these small cells would force the time-step of a time-dependent solver to
become prohibitively small. Typical applications only solve problems without
boundary layers (Euler equations, for example, as opposed to Navier-Stokes
equations). Since the boundary is not aligned with a grid line, in order to
resolve a boundary layer it is necessary to refine the grid in two directions
in two dimensions and three directions in three dimensions. In contrast, a
three-dimensional boundary-fitted grid need only refine the grid in the direc-
tion normal to the boundary. This can be an important consideration, since
the boundary layer grid spacing can be more than 103 times smaller than the
spacing away from the boundary.

4. Multi-block-structured grid generation
In the multi-block-structured grid approach, the computational volume is di-
vided into a set of non-overlapping logically rectangular blocks. A volume
grid is created on each block; see Thompson (1988) and Spekreijse (1995).
Usually, global smoothing is performed on the blocks to achieve some degree
of continuity in the grid metrics at the block boundaries. Discontinuities in
the grid spacing at block boundaries can result in poor solutions. Grid lines
may or may not join across blocks; if not, the grid is sometimes called a
patched grid. Patched grids require more general interpolation, but this can
easily be made conservative.

The multi-block approach has been popular for many years for aerospace
and other applications. It has improved flexibility over a single logically rect-
angular patch. High-quality grids can be created, and solvers are fast and
efficient. Efficient numerical methods such as implicit methods and multigrid
methods work well. Good-quality, highly stretched boundary-layer grids can
be created. The main disadvantage with the method is that it is difficult to
automate the decomposition of a region into non-overlapping blocks, espe-
cially in three dimensions. There is some difficulty with moving geometries
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Fig. 6. Block decomposition of a hydroelectric power station.

Fig. 7. Corresponding grid.
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since the block decomposition may have to change. Generating a multi-block
grid for a complicated three-dimensional region usually requires significant
human intervention.

Figs 6 and 7 show a block structure grid for a hydroelectric power station
(Spekreijse, Boerstoel, Vitagliano and Kuyvenhoven 1992). Fig. 8, showing
a multi-block-structured grid for the space shuttle, is reproduced courtesy of
Steven Alter, Lockheed Engineering and Sciences Company.

4-1. Structured component grid generation approaches

One of the most important parts of structured grid generation (whether multi-
block or overlapping) is the creation of the individual blocks. The blocks will
generally have some or all bounding surfaces specified, and the aim is to create
a smooth volume-filling grid with appropriate grid spacing and orthogonality.
The most common techniques fall into the following categories:

• algebraic
• elliptic and variational
• hyperbolic.

Algebraic grid generation methods create grids for the interior of a domain
by algebraically combining the representations of the boundary surfaces. The
transfinite interpolation procedure uses polynomials to interpolate the interior
grid from the boundaries; see Thompson et al. (1985). For example, a two-
dimensional grid bounded by the two curves Ci(s) and C2(s), can be created
using the simple shearing transformation

Whether the grid is useful depends strongly on the shape and parameterization
of the curves. Algebraic methods are not as flexible as some of the other
methods but their simplicity and speed of generation makes them popular.

Elliptic generation methods, pioneered by Thompson and co-workers, can
handle more general cases. They can be used to construct high-quality grids
on rather complicated domains; see, for example, Thompson (1987), Sorenson
(1986), and Spekreijse (1995). A Poisson equation is solved to determine the
location of the grid points. This equation commonly takes the form (in two
dimensions):

where {r{\ are the unit square coordinates, {x{\ are the physical domain
coordinates and {Pi} are the control functions. In practice, these equations
are transformed so that {rj} are the independent variables,
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Fig. 8. Multi-block grid for the space shuttle.
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Here,
<9x 5x

are the coefficients of the metric tensor. The equations are elliptic in nature
and this means that the resulting grid has desirable smoothness properties.
One of the keys to elliptic grid generation is the choice of control functions that
determine the grid point spacing and grid orthogonality. The Poisson system
that needs to be solved can be highly nonlinear and is difficult and time-
consuming to solve. The solution to the system is generally not guaranteed
to produce a single-valued grid, so care must be taken to prevent the grid
from becoming multi-valued (folding).

The variational approach also produces an elliptic equation whose solu-
tion determines the locations of the grid points; see Brackbill and Saltzman
(1982)T and Knupp and Steinberg (1993). The equations determining the
grid point locations are derived by forming the Euler-Lagrange (variational)
equations of a functional that measures properties of the grid such as ortho-
gonality, cell area and smoothness. By weighting these different properties it
is usually possible to obtain a grid with the desired features, although care
must be taken to prevent folding grids.

Hyperbolic grid generation methods solve a hyperbolic set of equations to
grow a grid from a boundary; see Starius (1977) and Chan and Steger (1992).
Fig. 9 shows a grid generated in this way (Chan and Steger 1992).

Typically, the hyperbolic system is defined by requiring that the grid lines
be orthogonal,

<9x <9x

= * •

and that the cell area is specified

dr

Hyperbolic methods usually always add smoothing to prevent grid lines from
crossing prematurely. The outer boundary of the grid is determined as
the equations are solved, and thus this method is of limited use for block-
structured grids. It is, however, an extremely useful technique in the context
of overlapping grids. The method is much faster than an elliptic method since
the grid is constructed by marching.

5. Overlapping grid generation

The overlapping (overlaid, overset or Chimera) grid approach is similar to
the block-structured approach except that the component grids are allowed

t It doesn't hurt to cite your manager whenever possible.
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Fig. 9. Some sections of a three-dimensional grid for the liquid hydrogen feedline
of the space shuttle, created with hyperbolic grid generation methods.

to overlap, instead of aligning along block boundaries; see Steger and Benek
(1987), Chesshire and Henshaw (1990), Meakin (1995), Tu and Fuchs (1995).
This approach has added flexibility over the block-structured technique while
still retaining the efficiency of a set of logically rectangular grids. The great
strength of overlapping grids is that component grids can be created in a
manner that is relatively independent from the other component grids. New
features can be added to the composite grid in an incremental fashion and the
grid only changes locally. Fig. 10 shows part of a detailed overlapping grid
for the space shuttle (Gomez and Ma 1994). The method is also attractive
for moving geometries. Fig. 11 shows the overlapping grid used for a moving
grid computation (Meakin 1995).

Overlapping grids are not as flexible as unstructured grids. It is difficult
to get very many levels of coarser grids for a multigrid algorithm because the
coarsened grids do not overlap enough. Generally, the interpolation between
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Fig. 10. Overlapping grid for the space shuttle; the three-dimensional grid has over
16 million grid points.
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Fig. 11. Overlapping grid for the V-22 rotor and napped wing, used in a moving
grid computation.

component grids is not conservative (Chesshire and Henshaw 1994). In prac-
tice this rarely seems to be an issue. Generally, the grid generation proceeds
in two steps. First, separate component grids are constructed for the vari-
ous parts of the geometry, using algebraic, elliptic or hyperbolic methods.
Then, given a set of component grids, the grid generation process of determ-
ining how the grids overlap can be entirely automatic. The process can fail,
however, if there is insufficient overlap between components.

An approach similar to overlapping grids, but one that avoids using non-
conservative interpolation, is the hybrid grid technique as shown in Fig. 12,
reproduced courtesy of Dr. K.H. Kao at Nasa Lewis Research Center. The
region is covered by overlapping blocks but the grid in the overlapping area
is replaced by an unstructured grid of triangles.
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Fig. 12. A hybrid grid consisting of structured component grids joined with a
region of triangles.
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6. Unstructured grid generation

Unstructured grids have become very popular in recent years, due both to
the influence of the finite-element method and to the increase in the power
of computers. Unstructured grids and unstructured solvers have successfully
demonstrated their capabilities to handle complex geometries in the demand-
ing field of aerospace applications, an area dominated for many years by
structured grids. The most flexible and automatic grid generation codes cre-
ate unstructured grids. They are well suited to point-wise adaptive refinement
and to moving mesh methods. See, for example, Shostko and Lohner (1995),
Mavriplis (1995), Hasan, Probert, Morgan and Peraire (1995), George and
Seveno (1994), Lo (1995), Johnson and Tezduyar (1995).

It is difficult to achieve good performance on unstructured grids; more
memory is required and it is quite hard to apply certain fast algorithms such
as implicit methods and multigrid. Attaining performance on vector, parallel
and cache-based computer architectures is not easy for solvers using unstruc-
tured grids because these machines prefer that operations be performed on
data that is stored locally in memory. On an unstructured grid, the data
belonging to the neighbour of a point may be stored a long distance away.
Moreover, triangular (and tetrahedral) meshes inherently require more ele-
ments and more computations per grid point; in three dimensions, there are
some five to six times more tetrahedra per grid point than on a correspond-
ing mesh of hexahedra. The creation of better-quality grids for hyperbolic
problems and forming highly stretched elements in boundary layers continue
to be active areas of research.

Fig. 13 shows a three-dimensional unstructured grid refined near the bound-
ary, for use in a viscous flow computation. The figure has been provided by
Professor Jaime Peraire.

Fig. 14, showing a cross-section of a three-dimensional grid for Yucca Moun-
tain, is reproduced courtesy of Harold Trease, Los Alamos National Labor-
atory.

6.1. Un-structured grid generation approaches

Three popular methods for creating unstructured grids are

• Delaunay-based point insertion methods
• advancing front methods
• quadtree (octree) type methods.

Some of the most successful approaches use features of both the Delaunay
method and the advancing front method, combining the efficiency of the
former approach with the high element quality of the latter. Although quad-
rilateral (hexahedral) meshes are commonly used for structural problems,
meshes for CFD tend to be based on triangles (tetrahedra), with perhaps
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Fig. 13. Three-dimensional unstructured grid for a viscous flow computation.
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Fig. 14. Three-dimensional unstructured grid for Yucca Mountain

some quadrilateral (prismatic) elements near boundaries. There is some ques-
tion as to the accuracy of using very thin tetrahedra meshes in a boundary
layer; sometimes prismatic elements are used in the boundary layer. See, for
example, Kallinderis, Khawaja and McMorris (1995).

Most triangulation algorithms require a function defined over the entire
domain that provides the locally suggested value for the triangle size. This
background function is often denned on a background grid, either an existing
triangulation for the region or perhaps a rectangular grid that has been refined
in a quadtree fashion.

6.2. Delaunay-based methods

The Delaunay triangulation of a set of points has the property that the cir-
cumcircle through the vertices of any triangle contains no other points; see
Fig. 15. The Delaunay approach tends to create triangles that are regu-
larly proportioned. When a region is already filled with a distribution of
points, then either an incremental approach based on the Bowyer-Watson
algorithm (Watson 1981, Bowyer 1981), or an advancing-front/Delaunay ap-
proach (Tannemura, Ogawa and Ogita 1983, Merriam 1991) can be used.

One of the difficulties of the Delaunay approach is maintaining the integrity
of the boundary. The empty circumcircle property of Delaunay triangulations
does not hold at the boundary. Care must be taken to prevent the formation of
triangles whose edges cross the specified boundary. Sometimes this problem
is initially ignored, the boundary being modified at the end by swapping edges
and perhaps by adding new points. Another problem is that the Delaunay
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Fig. 15. In a Delaunay triangulation the circumcircles through the triangles are
empty of other points.

Fig. 16. The incremental Delaunay approach begins from an initial triangulation
and progressively adds points; for example, points may be added at the

circumcentre of the largest circumradius.

triangulation is not appropriate for creating very thin triangles in a boundary
layer: some other method must be used.

In general, the positions of the grid points are not initially specified; they
must be determined as part of the grid generation procedure. Incremental
Delaunay methods start from a very coarse initial triangulation. Points are
added one at a time, and the mesh is locally adjusted so that it remains
Delaunay, using the Bowyer-Watson algorithm (Baker 1992). There are a
variety of strategies for deciding where to add successive points. This point
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Fig. 17. The advancing-front method grows triangles from the boundaries.

placement strategy can be crucial to the quality of the resulting grid. One
simple strategy involves making a list of all triangles that are too large com-
pared to the value indicated by the background function, and incrementally
adding new points to these triangles (Holmes and Synder 1988). The result-
ing grid can depend significantly on the order in which the list is processed.
Another approach is to order the list by triangle size and add points to the
largest triangle first. An alternative algorithm suggested by Rebay (1993)
leads to the triangles being processed along a front that begins at the bound-
ary. It results in a high-quality mesh similar to those produced with the
advancing front method, but without some of the difficulties of that method.

6,3. Advancing front

A widely used method that results in high-quality triangulations is the advan-
cing-front method; see for example Lohner and Parikh (1988) and Marcum
and Weatherhill (1995). As the name suggests, the advancing-front method
starts from the boundaries and progressively adds triangles; see Fig. 17. The
triangulated region grows into the interior, forming a propagating front. Since
the procedure begins at the boundary, the triangles near the boundary can
be constructed to be of high quality; this is an especially important feature
for many PDEs. Furthermore, the integrity of the boundary is more easily
maintained than with the Delaunay approach. However, significant care must
be taken when the fronts merge, especially when the elements are of widely
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Fig. 18. The quadtree decomposition recursively sub-divides the region.

varying scale; otherwise the triangles may overlap, creating an invalid grid.
This requires efficient yet robust search algorithms to determine whether
a given point is close to some other part of the front. Sometimes a local
Delaunay approach is used when adding new points to the front; see Mavriplis
(1995) and Miiller, Roe and Deconinck (1993).

There are also advancing front type methods that use quadrilaterals, but
these meshes are not usually used for CFD computations; see for example
Blacker (1991).

6.4- Quadtree (octree)

In simple terms, the quadtree approach proceeds by dividing the region into
four rectangles and then recursively subdividing some of those rectangles
into four additional rectangles, see Fig. 18. The cell size is reduced to meet
certain criteria and so that the boundary is represented to sufficient resolution.
The cells intersecting the boundary are replaced by polygons that follow the
boundary. If a triangular mesh is required, the rectangles and polygons can
be decomposed into triangles. The quadtree approach is widely used for
structural problems; see for example Shephard and George (1991). It is also
used to create grids for the Cartesian mesh approach, but is not commonly
used to create triangular grids for unstructured flow computations. One
disadvantage of the approach is that it cannot be made to conform to a
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specified boundary tessellation. Furthermore, it is difficult to control the
triangle shape near the boundary.

7. Conclusions

Significant advances have been made in the area of automatic grid generation
in recent years. The most notable accomplishment is the success of the un-
structured grid approach. This flexible approach shows the greatest promise
in achieving the goal of a completely automated grid generation procedure
for general applications. Structured grid methods, although less automatic
(and despite announcements of their death by some in the unstructured com-
munity) , will continue to be used due to their superior efficiency and accuracy.
The author's personal opinion is that overlapping grids, or the hybrid grid ap-
proach that replaces the overlapping region by triangles, have great potential
for many classes of problems since they are quite flexible and fast. In gen-
eral, all types of hybrid grids, which combine the best features of structured
grids (speed, quality and efficiency) with the best features of unstructured
grids (flexibility), will probably be more widely used in the future. One prob-
able reason why hybrid grids are not used more is the complexity of writing
solvers for these grids. Improvements in software through the use of better
computer languages and object-oriented design should alleviate some of these
difficulties.

Despite impressive achievements to date, there is still room for improve-
ment at almost every stage of the grid generation process. For example, the
step of taking a CAD description of the geometry and forming smooth surface
grids is in general very difficult. Designers of CAD systems need to be more
aware of the stringent requirements needed in CFD applications. All grid
generation approaches need to be more automatic, more robust, faster, and
produce better quality grids. It is perhaps not unfair to say that even the
most automatic system of today still requires significant human intervention.
Grid generation takes too long and still requires that the person generating
the grid not only be an expert in grids but also an expert in CAD and solvers.
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